sexta-feira, 30 de novembro de 2012


Ondas mecânicas e eletromagnéticas

Natureza das ondas

Natureza das ondas 
As ondas possuem duas naturezas: as mecânicas e as eletromagnéticas vejamos cada uma delas:
a) Ondas mecânicas
Essas ondas se formam através de impulsos mecânicos que se transmitem por meio de vibrações das partículas que formam o meio.
Podemos observar que as ondas mecânicas precisam da presença do meio material (das partículas), para que consigam se transmitir. É por este fator que as ondas mecânicas não se propagam no vácuo. 
Essas ondas mecânicas transportam energia mecânica de vibração que aparece na forma de energia potencial e cinética. 
Por causa da redução na profundidade do mar, as ondas quando se quebram na chegada da praia, não são ondas puras e sim uma espécie de correnteza capaz de arrastar corpos.
Alguns exemplos de ondas mecânicas são:
• Ondas em cordas e molas; 
• Ondas em superfícies líquidas; 
• Ondas sonoras (som). 
Na figura acima, um alto – falante produz um som que é detectado por um observador. O cone do alto-falante vibra, avançando e retrocedendo, empurrando sucessivamente o ar. Esses incrementos de pressão são transmitidos a outras regiões do ar, formando uma onda. Ao atingirem o ouvido da pessoa, eles fazem o tímpano vibrar, provocando assim a sensação da audição. Assim, o som é uma onda mecânica (onda de pressão), que exige um meio material para se propagar.
b) Ondas eletromagnéticas
Essas ondas são formadas por dois campos perpendiculares entre si, um magnético (B) e um elétrico (E), ou seja, variáveis com o tempo e com a posição e perpendiculares à direção de propagação da onda. 
Vejamos: 
A figura acima, nos mostra uma onda eletromagnética. Podemos perceber que as direções dos campos elétricos (E) e magnéticos (B) são perpendiculares entre si e também perpendiculares à direção de propagação da onda. Na parte de baixo da figura, estão representados os vetores E e B como “vistos” pelo observador durante meio período da onda (t = T/2).
É importante sabermos que as ondas eletromagnéticas se propagam no vácuo e também nos meios materiais.
Alguns exemplos de ondas eletromagnéticas são: 
• Ondas de rádio e TV; 
• Microondas; 
• Infravermelho; 
• Ultravioleta; 
• Raios – X; 
• Luz visível;

• Raios gama.
Observações: 
• O som é denominado uma onda mecânica. 
• A luz é denominada uma onda eletromagnética.
Assim,
O som não se difunde no vácuo.
A luz difundi – se no vácuo e fora dele.

A importância do estudo da forma de propagação das ondas para o progresso tecnológico


Em nossa vida diária, estamos continuamente em contato com diversos tipos de ondas. Algumas destas ondas são velhas conhecidas como é o caso do som, em que sem ele não existiria a comunicação verbal, muito menos a audição, ou então a luz, responsável por fenômenos tão complexos como a visão dos animais e a fotossíntese das plantas, em que sem ela não existira vida na Terra.

Deste modo, algumas destas ondas podemos ver (luz, pulsos produzidos por uma corda esticada, ondas que se propagam na superfície da água quando algum objeto cai sobre ela, etc), outras podemos ouvir (deste o mais irritante barulho, até a mais melodiosa sinfonia) e outras não podemos ver nem ouvir mas nem por isso deixam de existir ou ter menor importância sobre os mecanismos que regem a natureza.

Apesar de existirem ondas de origem e natureza diversas (luz é onda eletromagnética ao passo que o som é onda mecânica), todas elas possuem algo em comum: são energias propagando-se por um meio, que não é transportado nessa propagação.

O estudo das ondas é relevante não só pela beleza de conhecer os mecanismos que produzem o pôr-do-Sol ou um arco-íris, mas pelos benefícios tecnológicos decorrentes a este estudo, como o advento dos meios de comunicação (telégrafo, o aparelho de AM/FM, a televisão, telefone, etc), ou o uso dos raios-x no diagnóstico de fraturas e/ou doenças, que fizeram emergir todo um campo da física aplicada à medicina.

Por isto, os conceitos relativos à mecânica ondulatória são importantes para que se compreenda o mundo como ele é, mesclando suas partes poéticas como a música com as tecnologicamente investigadas como a eletrônica.

Para finalizar, com o aparecimento da mecânica quântica no começo do século XX, descobriu-se que tudo o que existe na natureza vibra (átomos, moléculas, pêndulos, etc), de modo que hoje em dia a compreensão dos fenômenos oscilatórios representam um papel primordial no entendimento do Universo.

Luz e as demais ondas eletromagnéticas



INTRODUÇÃO

É importante tomarmos consciência de como estamos imersos em ondas eletromagnéticas. Iniciando pelos Sol, a maior e mais importante fonte para os seres terrestres, cuja vida depende do calor e da luz recebidos através de ondas eletromagnéticas.
Além de outras, recebemos também: a radiação eletromagnética emitida, por átomos de hidrogênio neutro que povoam o espaço interestelar da nossa galáxia; as emissões na faixa de radiofrequências dos "quasares" (objetos ópticos que se encontram a enormes distâncias de nós, muito além de nossa galáxia, e que produzem enorme quantidade de energia); pulsos intensos de radiação dos "pulsares" (estrelas pequenas cuja densidade média é em torno de 10 trilhões de vezes a densidade média do Sol).
fig

Essas radiações são tão importantes que deram origem a uma nova ciência, a Radioastronomia, que se preocupa em captar e analisar essas informações obtidas do espaço através de ondas.
Há ainda as fontes terrestres de radiação eletromagnética: as estações de rádio e de TV, o sistema de telecomunicações à base de microondas, lâmpadas artificiais, corpos aquecidos e muitas outras.
fig
A primeira previsão da existência de ondas eletromagnéticas foi feita, em 1864, pelo físico escocês, James Clerk Maxwell . Ele conseguiu provar teoricamente que uma perturbação eletromagnética devia se propagar no vácuo com uma velocidade igual à da luz.
E a primeira verificação experimental foi feita por Henrich Hertz, em 1887. Hertz produziu ondas eletromagnéticas por meio de circuitos oscilantes e, depois, detectou-se por meio de outros circuitos sintonizados na mesma frequência. Seu trabalho foi homenageado posteriormente colocando-se o nome "Hertz" para unidade de frequência.

LEIS DE MAXWELL

Maxwell estabeleceu algumas leis básicas de eletromagnetismo, baseado nas já conhecidas anteriormente, como a Lei de Coulomb, a Lei de Ampère, a Lei de Faraday, etc.
Na realidade , Maxwell reuniu os conhecimentos existentes e descobriu as correlações que havia em alguns fenômenos, dando origem à teoria de que eletricidade, magnetismo e óptica são de fato manifestações diferentes do mesmo fenômeno físico.
O físico inglês Michael Faraday já havia afirmado que era possível produzir um campo a partir de um campo magnético variável.
Imagine um imã e um anel:
fig
Considere o imã perpendicular ao plano do anel. Movendo-se ou o imã ou o anel, aparecerá uma corrente no anel, causado por um campo elétrico criado devido à variação do fluxo magnético no anel.
Maxwell verificou que o contrário também era possível. Um campo elétrico variável podia gerar um campo magnético.
Imagine duas placas paralelas sendo carregadas progressivamente:
fig
Ao crescerem as cargas das placas, o campo elétrico aumenta, produzindo uma campo magnético (devido a variação do campo elétrico).
Embora Maxwell tenha estabelecido quatro equações para descrever os fenômenos eletromagnéticos analisados, podemos ter uma noção de sua teoria baseados em duas conclusões:
  • Um campo elétrico variável no tempo produz um campo magnético.
  • Um campo magnético variável no tempo produz um campo elétrico.

A GERAÇÃO DE ONDAS ELETROMAGNÉTICAS
Imagine uma antena de uma estação de rádio:
fig
Na extremidade da antena existe um fio ligado pelo seu centro a uma fonte alternada (que inverte o sentido a intervalos de tempo determinados). Num certo instante, teremos a corrente num sentido e, depois de alguns instantes, a corrente no outro sentido.
fig
fig
A velocidade de propagação de uma onda eletromagnética depende do meio em que ela se propaga.
Maxwell mostrou que a velocidade de propagação de uma onda eletromagnética, no vácuo, é dada pela expressão:
fig
onde fig é a permissividade elétrica do vácuo e fig é a permeabilidade magnética do vácuo.
Aplicando os valores de fig e de fig na expressão acima, encontra-se a velocidade:
fig
ou
fig
(valor exato)
que é igual a velocidade da luz. Nisso Maxwell se baseou para afirmar que a luz também é uma onda eletromagnética.
Podemos resumir as características das ondas eletromagnéticas no seguinte:
  • São formadas por campos elétricos e campos magnéticos variáveis.
  • O campo elétrico é perpendicular ao campo magnético.
  • São ondas transversais (os campos são perpendiculares à direção de propagação).
  • Propagam-se no vácuo com a velocidade "c" .
  • Podem propagar-se num meio material com velocidade menor que a obtida no vácuo.
Com isto, o campo elétrico ao redor do fio em um certo instante estará apontando num sentido e, depois, no sentido contrário.
Esse campo elétrico variável (E) irá gerar um campo magnético (B) , que será também variável. Por sua vez, esse campo magnético irá gerar um campo elétrico. E assim por diante .... Cada campo varia e gera outro campo que, por ser variável, gera outro campo: e está criada a perturbação eletromagnética que se propaga através do espaço, constituída pelos dois campos em recíprocas induções.
fig
Note que o campo elétrico é perpendicular à direção de propagação e o campo magnético também, o que comprova que a onda eletromagnética é uma onda transversal.
Além disso, o campo elétrico é perpendicular ao campo magnético, o que podemos verificar facilmente: quando um fio é percorrido por cargas em movimento, o campo elétrico num ponto próximo ao fio pertence ao plano do fio, enquanto o campo magnético está saindo ou entrando neste plano.
fig

ESPECTRO ELETROMAGNÉTICO
A palavra espectro (do latim "spectrum", que significa fantasma ou aparição) foi usada por Isaac Newton, no século XVII, para descrever a faixa de cores que apareceu quando numa experiência a luz do Sol atravessou um prisma de vidro em sua trajetória.
Atualmente chama-se espectro eletromagnético à faixa de frequências e respectivos comprimentos de ondas que caracterizam os diversos tipos de ondas eletromagnéticas.
As ondas eletromagnéticas no vácuo têm a mesma velocidade , modificando a frequência de acordo com espécie e, consequentemente, o comprimento de onda.
fig
** As escalas de frequência e comprimento de onda são logarítmicas.
Fisicamente, não há intervalos no espectro. Podemos ter ondas de qualquer frequências que são idênticas na sua natureza, diferenciando no modo como podemos captá-las.
Observe que algumas frequências de TV podem coincidir com a frequência de FM. Isso permite algumas vezes captar uma rádio FM na televisão ou captar um canal de TV num aparelho de rádio FM.

CARACTERÍSTICAS DAS PRINCIPAIS RADIAÇÕES

Ondas de Rádio
"Ondas de rádio" é a denominação dada às ondas desde frequências muito pequenas, até 1012 Hz , acima da qual estão os raios infravermelhos.
As ondas de rádio são geradas por osciladores eletrônicos instalados geralmente em um lugar alto, para atingir uma maior região. Logo o nome "ondas de rádio" inclui as microondas, as ondas de TV, as ondas curtas, as ondas longas e as próprias bandas de AM e FM.

Ondas de rádio propriamente ditas
As ondas de rádio propriamente ditas, que vão de 104 Hz a 107 Hz , têm comprimento de onda grande, o que permite que elas sejam refletidas pelas camadas ionizadas da atmosfera superior (ionosfera).
fig
Estas ondas, além disso, têm a capacidade de contornar obstáculos como árvores, edifícios, de modo que é relativamente fácil captá-las num aparelho rádio-receptor.

Ondas de TV
As emissões de TV são feitas a partir de 5x107 Hz (50 MHz) . É costume classificar as ondas de TV em bandas de frequência (faixa de frequência), que são:
  • VHF : very high frequency (54 MHz à 216 MHZ è canal 2 à 13)
  • UHF : ultra-high frequency (470 MHz à 890 MHz è canal 14 à 83)
  • SHF : super-high frequency
  • EHF : extremely high frequency
  • VHFI : veri high frequency indeed
As ondas de TV não são refletidas pela ionosfera, de modo que para estas ondas serem captadas a distâncias superiores a 75 Km é necessário o uso de estações repetidoras.
fig

Microondas
Microondas correspondem à faixa de mais alta frequência produzida por osciladores eletrônicos. Frequências mais altas que as microondas só as produzidas por oscilações moleculares e atômicas.
As microondas são muito utilizadas em telecomunicações. As ligações de telefone e programas de TV recebidos "via satélite" de outros países são feitas com o emprego de microondas.
fig
As microondas também podem ser utilizadas para funcionamento de um radar. Uma fonte emite uma radiação que atinge um objeto e volta para o ponto onde a onda foi emitida. De acordo com a direção em que a radiação volta pode ser descoberta a localização do objeto que refletiu a onda.
fig
Luz visível
Note que nosso olho só tem condições de perceber frequências que vão de 4,3x1014 Hz a 7x1014 , faixa indicada pelo espectro como luz visível.
Nosso olho percebe a frequência de 4,3x1014 como a cor vermelha. Frequências abaixo desta não são visíveis e são chamados de raios infravermelhos , que têm algumas aplicações práticas.
A frequência de 7x1014 é vista pelo olho como cor violeta. Frequências acima desta também não são visíveis e recebem o nome de raios ultravioleta. Têm também algumas aplicações.
A faixa correspondente à luz visível pode ser subdividida de acordo com o espectro a seguir.
fig
Raios X
Os raios X foram descobertos, em 1895, pelo físico alemão Wilhelm Röntgen. Os raios X têm frequência alta e possuem muita energia. São capazes de atravessar muitas substâncias embora sejam detidos por outras, principalmente pelo chumbo.
Esses raios são produzidos sempre que um feixe de elétrons dotados de energia incidem sobre um obstáculo material. A energia cinética do feixe incidente é parcialmente transformada em energia eletromagnética, dando origem aos raios X.
Os raios X são capazes de impressionar uma chapa fotográfica e são muito utilizados em radiografias, já que conseguem atravessar a pele e os músculos da pessoa, mas são retidos pelos ossos.
fig
Os raios X são também bastante utilizados no tratamento de doenças como o câncer. Têm ainda outras aplicações: na pesquisa da estrutura da matéria, em Química, em Mineralogia e outros ramos.

Raios Gama
As ondas eletromagnéticas com frequência acima da dos raios X recebe o nome de raios gama (g ).
Os raios g são produzidos por desintegração natural ou artificial de elementos radioativos.
fig
Um material radioativo pode emitir raios g durante muito tempo, até atingir uma forma mais estável.
Raios g de alta energia podem ser observados também nos raios cósmicos que atingem a alta atmosfera terrestre em grande quantidade por segundo.
Os raios g podem causar graves danos às células, de modo que os cientistas que trabalham em laboratório de radiação devem desenvolver métodos especiais de detecção e proteção contra doses excessivas desses raios.

Termômetros


Termômetros

Escalas Termométricas
Para que seja possível medir a temperatura de um corpo, foi desenvolvido um aparelho chamado termômetro.
O termômetro mais comum é o de mercúrio, que consiste em um vidro graduado com um bulbo de paredes finas que é ligado a um tubo muito fino, chamado tubo capilar.
Quando a temperatura do termômetro aumenta, as moléculas de mercúrio aumentam sua agitação fazendo com que este se dilate, preenchendo o tubo capilar. Para cada altura atingida pelo mercúrio está associada uma temperatura.
A escala de cada termômetro corresponde a este valor de altura atingida.

Escala Celsius
É a escala usada no Brasil e na maior parte dos países, oficializada em 1742 pelo astrônomo e físico sueco Anders Celsius (1701-1744). Esta escala tem como pontos de referência a temperatura de congelamento da água sob pressão normal (0°C) e a temperatura de ebulição da água sob pressão normal (100°C).

Escala Fahrenheit
Outra escala bastante utilizada, principalmente nos países de língua inglesa, criada em 1708 pelo físico alemão Daniel Gabriel Fahrenheit (1686-1736), tendo como referência a temperatura de uma mistura de gelo e cloreto de amônia (0°F) e a temperatura do corpo humano (100°F).
Em comparação com a escala Celsius:
0°C=32°F
100°C=212°F

Escala Kelvin
Também conhecida como escala absoluta, foi verificada pelo físico inglês William Thompson (1824-1907), também conhecido como Lorde Kelvin. Esta escala tem como referência a temperatura do menor estado de agitação de qualquer molécula (0K) e é calculada apartir da escala Celsius.
Por convenção, não se usa "grau" para esta escala, ou seja 0K, lê-se zero kelvin e não zero grau kelvin. Em comparação com a escala Celsius:
-273°C=0K
0°C=273K
100°C=373K

Conversões entre escalas
Para que seja possível expressar temperaturas dadas em uma certa escala para outra qualquer deve-se estabelecer uma convenção geométrica de semelhança.
Por exemplo, convertendo uma temperatura qualquer dada em escala Fahrenheit para escala Celsius:
Pelo princípio de semelhança geométrica:

Exemplo:
Qual a temperatura correspondente em escala Celsius para a temperatura 100°F?

Da mesma forma, pode-se estabelecer uma conversão Celsius-Fahrenheit:

E para escala Kelvin:


Algumas temperaturas:
Escala Celsius (°C)Escala Fahrenheit (°F)Escala Kelvin (K)
Ar liquefeito
-39
-38,2
243
Maior Temperatura na superfície da Terra
58
136
331
Menor Tempertura na superfície da Terra
-89
-128
184
Ponto de combustão da madeira
250
482
523
Ponto de combustão do papel
184
363
257
Ponto de fusão do chumbo
327
620
600
Ponto de fusão do ferro
1535
2795
1808
Ponto do gelo
0
32
273,15
Ponto de solidificação do mercúrio
-39
-38,2
234
Ponto do vapor
100
212
373,15
Temperatura na chama do gás natural
660
1220
933
Temperatura na superfície do Sol
5530
10000
5800
Zero absoluto
-273,15
-459,67
0

Dilatação Térmica


Dilatação Térmica

Vídeos e experiências para explicar a dilatação térmica:



Calorimetria




CALORIMETRIA
Calor
Quando colocamos dois corpos com temperaturas diferentes em contato, podemos observar que a temperatura do corpo "mais quente" diminui, e a do corpo "mais frio" aumenta, até o momento em que ambos os corpos apresentem temperatura igual. Esta reação é causada pela passagem de energia térmica do corpo "mais quente" para o corpo "mais frio", a transferência de energia é o que chamamos calor.
Calor é a transferência de energia térmica entre corpos com temperaturas diferentes.
A unidade mais utilizada para o calor é caloria (cal), embora sua unidade no SI seja o joule (J). Uma caloria equivale a quantidade de calor necessária para aumentar a temperatura de um grama de água pura, sob pressão normal, de 14,5°C para 15,5°C.
A relação entre a caloria e o joule é dada por:
1 cal = 4,186J
Partindo daí, podem-se fazer conversões entre as unidades usando regra de três simples.
Como 1 caloria é uma unidade pequena, utilizamos muito o seu múltiplo, a quilocaloria.
1 kcal = 10³cal

Calor sensível
É denominado calor sensível, a quantidade de calor que tem como efeito apenas a alteração da temperatura de um corpo.
Este fenômeno é regido pela lei física conhecida como Equação Fundamental da Calorimetria, que diz que a quantidade de calor sensível (Q) é igual ao produto de sua massa, da variação da temperatura e de uma constante de proporcionalidade dependente da natureza de cada corpo denominada calor específico.
Assim:
Onde:
Q = quantidade de calor sensível (cal ou J).
c = calor específico da substância que constitui o corpo (cal/g°C ou J/kg°C).
m = massa do corpo (g ou kg).
Δθ = variação de temperatura (°C).

É interessante conhecer alguns valores de calores específicos:
Substância
c (cal/g°C)
Alumínio
0,219
Água
1,000
Álcool
0,590
Cobre
0,093
Chumbo
0,031
Estanho
0,055
Ferro
0,119
Gelo
0,550
Mercúrio
0,033
Ouro
0,031
Prata
0,056
Vapor d'água
0,480
Zinco
0,093
Quando:
Q>0: o corpo ganha calor.
Q<0: o corpo perde calor.

Exemplo:
Qual a quantidade de calor sensível necessária para aquecer uma barra de ferro de 2kg de 20°C para 200°C? Dado: calor específico do ferro = 0,119cal/g°C.
2kg = 2000g
Calor latente
Nem toda a troca de calor existente na natureza se detém a modificar a temperatura dos corpos. Em alguns casos há mudança de estado físico destes corpos. Neste caso, chamamos a quantidade de calor calculada de calor latente.
A quantidade de calor latente (Q) é igual ao produto da massa do corpo (m) e de uma constante de proporcionalidade (L).
Assim:
A constante de proporcionalidade é chamada calor latente de mudança de fase e se refere a quantidade de calor que 1g da substância calculada necessita para mudar de uma fase para outra.
Além de depender da natureza da substância, este valor numérico depende de cada mudança de estado físico.
Por exemplo, para a água:
Calor latente de fusão
80cal/g
Calor latente de vaporização
540cal/g
Calor latente de solidificação
-80cal/g
Calor latente de condensação
-540cal/g

Quando:
Q>0: o corpo funde ou vaporiza.
Q<0: o corpo solidifica ou condensa.

Exemplo:
Qual a quantidade de calor necessária para que um litro de água vaporize? Dado: densidade da água=1g/cm³ e calor latente de vaporização da água=540cal/g.
Assim:

Curva de aquecimento
Ao estudarmos os valores de calor latente, observamos que estes não dependem da variação de temperatura. Assim podemos elaborar um gráfico de temperatura em função da quantidade de calor absorvida. Chamamos este gráfico de Curva de Aquecimento:
Trocas de calor
Para que o estudo de trocas de calor seja realizado com maior precisão, este é realizado dentro de um aparelho chamado calorímetro, que consiste em um recipiente fechado incapaz de trocar calor com o ambiente e com seu interior.
Dentro de um calorímetro, os corpos colocados trocam calor até atingir o equilíbrio térmico. Como os corpos não trocam calor com o calorímetro e nem com o meio em que se encontram, toda a energia térmica passa de um corpo ao outro.
Como, ao absorver calor Q>0 e ao transmitir calor Q<0, a soma de todas as energias térmicas é nula, ou seja:
ΣQ=0
(lê-se que somatório de todas as quantidades de calor é igual a zero)
Sendo que as quantidades de calor podem ser tanto sensível como latente.

Exemplo:
Qual a temperatura de equilíbrio entre uma bloco de alumínio de 200g à 20°C mergulhado em um litro de água à 80°C? Dados calor específico: água=1cal/g°C e alumínio = 0,219cal/g°C.
Capacidade térmica
É a quantidade de calor que um corpo necessita receber ou ceder para que sua temperatura varie uma unidade.
Então, pode-se expressar esta relação por:
Sua unidade usual é cal/°C.

A capacidade térmica de 1g de água é de 1cal/°C já que seu calor específico é 1cal/g.°C.
Transmissão de Calor
Em certas situações, mesmo não havendo o contato físico entre os corpos, é possível sentir que algo está mais quente. Como quando chega-se perto do fogo de uma lareira. Assim, concluímos que de alguma forma o calor emana desses corpos "mais quentes" podendo se propagar de diversas maneiras.
Como já vimos anteriormente, o fluxo de calor acontece no sentido da maior para a menor temperatura.
Este trânsito de energia térmica pode acontecer pelas seguintes maneiras:
  • condução;
  • convecção;
  • irradiação.
Fluxo de Calor
Para que um corpo seja aquecido, normalmente, usa-se uma fonte térmica de potência constante, ou seja, uma fonte capaz de fornecer uma quantidade de calor por unidade de tempo.
Definimos fluxo de calor (Φ) que a fonte fornece de maneira constante como o quociente entre a quantidade de calor (Q) e o intervalo de tempo de exposição (Δt):
Sendo a unidade adotada para fluxo de calor, no sistema internacional, o Watt (W), que corresponde a Joule por segundo, embora também sejam muito usada a unidade caloria/segundo (cal/s) e seus múltiplos: caloria/minuto (cal/min) e quilocaloria/segundo (kcal/s).

Exemplo:
Uma fonte de potência constante igual a 100W é utilizada para aumentar a temperatura 100g de mercúrio 30°C. Sendo o calor específico do mercúrio 0,033cal/g.°C e 1cal=4,186J, quanto tempo a fonte demora para realizar este aquecimento?
Aplicando a equação do fluxo de calor:
Condução Térmica
É a situação em que o calor se propaga através de um "condutor". Ou seja, apesar de não estar em contato direto com a fonte de calor um corpo pode ser modificar sua energia térmica se houver condução de calor por outro corpo, ou por outra parte do mesmo corpo.
Por exemplo, enquanto cozinha-se algo, se deixarmos uma colher encostada na panela, que está sobre o fogo, depois de um tempo ela esquentará também.
Este fenômeno acontece, pois, ao aquecermos a panela, suas moléculas começam a agitar-se mais, como a panela está em contato com a colher, as moléculas em agitação maior provocam uma agitação nas moléculas da colher, causando aumento de sua energia térmica, logo, o aquecimento dela.
Também é por este motivo que, apesar de apenas a parte inferior da panela estar diretamente em contato com o fogo, sua parte superior também esquenta.

Convecção Térmica
A convecção consiste no movimento dos fluidos, e é o princípio fundamental da compreensão do vento, por exemplo.
O ar que está nas planícies é aquecido pelo sol e pelo solo, assim ficando mais leve e subindo. Então as massas de ar que estão nas montanhas, e que está mais frio que o das planícies, toma o lugar vago pelo ar aquecido, e a massa aquecida se desloca até os lugares mais altos, onde resfriam. Estes movimentos causam, entre outros fenômenos naturais, o vento.
Formalmente, convecção é o fenômeno no qual o calor se propaga por meio do movimento de massas fluidas de densidades diferentes.

Irradiação Térmica
É a propagação de energia térmica que não necessita de um meio material para acontecer, pois o calor se propaga através de ondas eletromagnéticas.
Imagine um forno microondas. Este aparelho aquece os alimentos sem haver contato com eles, e ao contrário do forno à gás, não é necessário que ele aqueça o ar. Enquanto o alimento é aquecido há uma emissão de microondas que fazem sua energia térmica aumentar, aumentando a temperatura.
O corpo que emite a energia radiante é chamado emissor ou radiador e o corpo que recebe, o receptor.

Ondas



ONDAS


Classificação das ondas
Uma onda é um movimento causado por uma perturbação, e esta se propaga através de um meio.
Um exemplo de onda é tido quando joga-se uma pedra em um lago de águas calmas, onde o impacto causará uma perturbação na água, fazendo com que ondas circulares se propagem pela superfície da água.
Também existem ondas que não podemos observar a olho nu, como, por exemplo, ondas de rádio, ondas de televisão, ondas ultra-violeta e microondas.
Além destas, existem alguns tipos de ondas que conhecemos bem, mas que não identificamos normalmente, como a luz e o som.
Mas o que elas têm em comum é que todas são energias propagadas através de um meio, e este meio não acompanha a propagação.
Conforme sua natureza as ondas são classificadas em:
  • Ondas Mecânicas: são ondas que necessitam de um meio material para se propagar, ou seja, sua propagação envolve o transporte de energia cinética e potencial e depende da elasticidade do meio. Por isto não é capaz de propagar-se no vácuo. Alguns exemplos são os que acontecem em molas e cordas, sons e em superfícies de líquidos.
  • Ondas Eletromagnéticas: são ondas geradas por cargas elétricas oscilantes e sua propagação não depende do meio em que se encontram, podendo propagar-se no vácuo e em determinados meios materiais. Alguns exemplos são as ondas de rádio, de radar, os raios x e as microondas.
Todas as ondas eletromagnéticas tem em comum a sua velocidade de propagação no vácuo, próxima a 300000km/s, que é equivalente a 1080000000km/h.
Por que as ondas do mar quebram?
Sabendo que as ondas em geral têm como característica fundamental propagar energia sem que haja movimentação no meio, como explica-se o fenômeno de quebra das ondas do mar, causando movimentação de água, próximo à costa?
Em águas profundas as ondas do mar não transportam matéria, mas ao aproximar-se da costa, há uma brusca diminuição da profundidade onde se encontram, provocando a quebra destas ondas e causando uma movimentação de toda a massa de água e a formação de correntezas.
Após serem quebradas, as ondas do mar deixam de comportar-se como ondas.

Quanto a direção de propagação as ondas são classificadas como:
  • Unidimensionais: que se propagam em apenas uma direção, como as ondas em cordas e molas esticadas;
  • Bidimensionais: são aquelas que se propagam por uma superfície, como as água em um lago quando se joga uma pedra;
  • Tridimensionais: são capazes de se propagar em todas as dimensões, como a luz e o som.
Quanto à direção da vibração as ondas podem ser classificadas como:
  • Transversais: são as que são causadas por vibrações perpendiculares à propagação da onda, como, por exemplo, em uma corda:
    • Longitudinais: são ondas causadas por vibrações com mesma direção da propagação, como as ondas sonoras.

      Componentes de uma onda

      Uma onda é formada por alguns componentes básicos que são:
      Sendo A a amplitude da onda.
      É denominado comprimento da onda, e expresso pela letra grega lambida (λ), a distância entre duas cristas ou dois vales consecutivos.
      Chamamos período da onda (T) o tempo decorrido até que duas cristas ou dois vales consecutivos passem por um ponto e freqüência da onda (f) o número de cristas ou vales consecutivos que passam por um mesmo ponto, em uma determinada unidade de tempo.
      Portanto, o período e a freqüência são relacionados por:
      A unidade internacionalmente utilizada para a freqüência é Hertz (Hz) sendo que 1Hz equivale à passagem de uma crista ou de um vale em 1 segundo.
      Para o estudo de ondas bidimensionais e tridimensionais são necessários os conceitos de:
      • frente de onda: é a fronteira da região ainda não atingida pela onda com a região já atingida;
      • raio de onda: é possível definir como o raio de onda a linha que parte da fonte e é perpendicular às frentes de onda, indicando a direção e o sentido de propagação.


      Velocidade de propagação das ondas

      Como não transportam matéria em seu movimento, é previsível que as ondas se desloquem com velocidade contínua, logo estas devem ter um deslocamento que valide a expressão:
      Que é comum aos movimentos uniformes, mas conhecendo a estrutura de uma onda:
      Podemos fazer que ΔS=λ e que Δt=T
      Assim:
      Sendo esta a equação fundamental da Ondulatória, já que é valida para todos os tipos de onda.
      É comum utilizar-se frequências na ordem de kHz (1quilohertz = 1000Hz) e de MHz (1megahertz = 1000000Hz)

      Exemplo:
      (1) Qual a frequência de ondas, se a velocidade desta onde é de 195m/s, e o seu comprimento de onda é de 1cm?
      1cm=0,01m

      Reflexão de ondas

      É o fenômeno que ocorre quando uma onda incide sobre um obstáculo e retorna ao meio de propagação, mantendo as características da onda incidente.
      Independente do tipo de onda, o módulo da sua velocidade permanece inalterado após a reflexão, já que ela continua propagando-se no mesmo meio.

      Reflexão em ondas unidimensionais

      Esta análise deve ser dividida oscilações com extremidade fixa e com extremidade livre:

      Com extremidade fixa:
      Quando um pulso (meia-onda) é gerado, faz cada ponto da corda subir e depois voltar a posição original, no entanto, ao atingir uma extremidade fixa, como uma parede, a força aplicada nela, pelo princípio da ação e reação, reage sobre a corda, causando um movimento na direção da aplicação do pulso, com um sentido inverso, gerando um pulso refletido. Assim como mostra a figura abaixo:
      Para este caso costuma-se dizer que há inversão de fase já que o pulso refletido executa o movimento contrário ao do pulso incidente.

      Com extremidade livre:
      Considerando uma corda presa por um anel a uma haste idealizada, portanto sem atrito.
      Ao atingir o anel, o movimento é continuado, embora não haja deslocamento no sentido do pulso, apenas no sentido perpendicular a este. Então o pulso é refletido em direção da aplicação, mas com sentido inverso. Como mostra a figura:
      Para estes casos não há inversão de fase, já que o pulso refletido executa o mesmo movimento do pulso incidente, apenas com sentido contrário.
      É possível obter-se a extremidade livre, amarrando-se a corda a um barbante muito leve, flexível e inextensível.

      Reflexão de ondas bidimensionais
      Quando uma frente de onda, propagando-se em superfície líquida, incide sobre um obstáculo, cada ponto da frente reflete-se, então é possível representá-las por seus raios de onda.
      A reflexão dos raios de onda é regida por duas leis da reflexão, que são apresentadas como:
      • 1ª Lei da Reflexão: O raio incidente, o raio refletido e a reta perpendicular à superfície refletora no ponto de incidência estão contidos sempre no mesmo plano;
      • 2ª Lei da Reflexão: Os ângulos formados entre o raio incidente e a reta perpendicular e entre o raio refletido e a reta perpendicular têm sempre a mesma medida.
      Assim:
      Como afirma a 2ª Lei, os ângulos têm valor igual, portanto:
      Então pode-se imaginar que a reflexão das ondas aconteça como se fosse refletida em um espelho posto perpendicularmente ao ponto de incidência.
      Considere a reflexão de ondas circulares:

      Refração de ondas

      É o fenômeno que ocorre quando uma onda passa de um meio para outro de características distintas, tendo sua direção desviada.
      Independente de cada onda, sua frequência não é alterada na refração, no entanto, a velocidade e o comprimento de onda podem se modificar.
      Através da refração é possíveis explicar inúmeros efeitos, como o arco-íris, a cor do céu no pôr-do-sol e a construção de aparelhos astronômicos.
      A refração de ondas obedece duas leis que são:
      • 1ª Lei da Refração: O raio incidente, a reta perpendicular à fronteira no ponto de incidência e o raio refratado estão contidos no mesmo plano.
      • Lei de Snell: Esta lei relaciona os ângulos, as velocidades e os comprimentos de onda de incidência de refração, sendo matematicamente expressa por:
      Aplicando a lei:
      Conforme indicado na figura:
      Como exemplos da refração, podem ser usadas ondas propagando-se na superfície de um líquido e passando por duas regiões distintas. É possível verificar experimentalmente que a velocidade de propagação nas superfícies de líquidos pode ser alterada modificando-se a profundidade deste local. As ondas diminuem o módulo de velocidade ao se diminuir a profundidade.

      Superposição de ondas

      A superposição, também chamada interferência em alguns casos, é o fenômeno que ocorre quando duas ou mais ondas se encontram, gerando uma onda resultante igual à soma algébrica das perturbações de cada onda.
      Imagine uma corda esticada na posição horizontal, ao serem produzidos pulsos de mesma largura, mas de diferentes amplitudes, nas pontas da corda, poderá acontecer uma superposição de duas formas:
      Situação 1: os pulsos são dados em fase.
      No momento em que os pulsos se encontram, suas elongações em cada ponto da corda se somam algebricamente, sendo sua amplitude (elongação máxima) a soma das duas amplitudes:
      Numericamente:
      Após este encontro, cada um segue na sua direção inicial, com suas características iniciais conservadas.
      Este tipo de superposição é chamado interferência construtiva, já que a superposição faz com que a amplitude seja momentaneamente aumentada em módulo.

      Situação 2: os pulsos são dados em oposição de fase.
      Novamente, ao se encontrarem as ondas, suas amplitudes serão somadas, mas podemos observar que o sentido da onda de amplitude  é negativo em relação ao eixo vertical, portanto <0. Logo, o pulso resultante terá amplitude igual a diferença entre as duas amplitudes:
      Numericamente:
      Sendo que o sinal negativo está ligado à amplitude e elongação da onda no sentido negativo.
      Após o encontro, cada um segue na sua direção inicial, com suas características iniciais conservadas.
      Este tipo de superposição é chamado interferência destrutiva, já que a superposição faz com que a amplitude seja momentaneamente reduzida em módulo.

      Superposição de ondas periódicas

      A superposição de duas ondas periódicas ocorre de maneira análoga à superposição de pulsos.
      Causando uma onda resultante, com pontos de elongação equivalentes à soma algébrica dos pontos das ondas sobrepostas.
      A figura acima mostra a sobreposição de duas ondas com períodos iguais e amplitudes diferentes (I e II), que, ao serem sobrepostas, resultam em uma onda com amplitude equivalente às suas ondas (III). Este é um exemplo de interferência construtiva.
      Já este outro exemplo, mostra uma interferência destrutiva de duas ondas com mesma frequência e mesma amplitude, mas em oposição de fase (I e II) que ao serem sobrepostas resultam em uma onda com amplitude nula (III).
      Os principais exemplos de ondas sobrepostas são os fenômenos ondulatórios de batimento e ondas estacionárias.
      • Batimento: Ocorre quando duas ondas periódicas de frequência diferente e mesma amplitude são sobrepostas, resultando em uma onda com variadas amplitudes dependentes do soma de amplitudes em cada crista resultante.
      • Ondas estacionárias: É o fenômeno que ocorre quando são sobrepostas duas ondas com mesma frequência, velocidade e comprimento de onda, na mesma direção, mas em sentidos opostos.

      Superposição de ondas bidimensionais

      Imagine duas ondas bidimensionais circulares, geradas respectivamente por uma fonte F1 e F2, com, amplitudes e frequências iguais, e em concordância de fase.
      Considere a esquematização da interferência causada como:
      Na figura a onda da esquerda tem cristas representadas por linhas contínuas pretas e vales por linhas tracejadas vermelhas e a onda da direita tem cristas representadas por linhas contínuas verdes e vales por linhas tracejadas azuis.
      Os círculos preenchidos representam pontos de interferência construtiva, ou seja, onde a amplitude das ondas é somada.
      Os círculos em branco representam pontos de interferência destrutiva, ou seja, onde a amplitude é subtraída.

      Ressonância
      É o fenômeno que acontece quando um sistema físico recebe energia por meio de excitações de freqüência igual a uma de suas freqüências naturais de vibração. Assim, o sistema físico passa a vibrar com amplitudes cada vez maiores.
      Cada sistema físico capaz de vibrar possui uma ou mais frequências naturais, isto é, que são características do sistema, mais precisamente da maneira como este é construído. Como por exemplo, um pêndulo ao ser afastado do ponto de equilíbrio, cordas de um violão ou uma ponte para a passagem de pedestres sobre uma rodovia movimentada.
      Todos estes sistemas possuem sua frequência natural, que lhes é característica. Quando ocorrem excitações periódicas sobre o sistema, como quando o vento sopra com freqüência constante sobre uma ponte durante uma tempestade, acontece um fenômeno de superposição de ondas que alteram a energia do sistema, modificando sua amplitude.
      Conforme estudamos anteriormente, se a freqüência natural de oscilação do sistema e as excitações constantes sobre ele estiverem sob a mesma frequência, a energia do sistema será aumentada, fazendo com que vibre com amplitudes cada vez maiores.
      Um caso muito famoso deste fenômeno foi o rompimento da ponte Tacoma Narrows, nos Estados Unidos, em 7 de novembro de 1940. Em um determinado momento o vento começou soprar com freqüência igual à natural de oscilação da ponte, fazendo com que esta começasse a aumentar a amplitude de suas vibrações até que sua estrutura não pudesse mais suportar, fazendo com que sua estrutura rompesse.
      O caso da ponte Tacoma Narrows pode ser considerado uma falha humana, já que o vento que soprava no dia 7 de Novembro de 1940 tinha uma frequência característica da região onde a ponte foi construída, logo os engenheiros responsáveis por sua construção falharam na análise das características naturais da região. Por isto, atualmente é feita uma análise profunda de todas as possíveis características que possam requerer uma alteração em uma construção civil.
      Imagine que esta é uma ponte construída no estilo pênsil, e que sua frequência de oscilação natural é dada por:
      Ao ser excitada periodicamente, por um vento de freqüência:
      A amplitude de oscilação da ponte passará a ser dada pela superposição das duas ondas:
      Se a ponte não tiver uma resistência que suporte a amplitude do movimento, esta sofrerá danos podendo até ser destruída como a ponte Tacoma Narrows.

      Princípio de Huygens

      Christian Huygens (1629-1695), no final do século XVII, propôs um método de representação de frentes de onda, onde cada ponto de uma frente de onda se comporta como uma nova fonte de ondas elementares, que se propagam para além da região já atingida pela onda original e com a mesma freqüência que ela. Sendo esta ideia conhecida como Princípio de Huygens.
      Para um considerado instante, cada ponto da frente de onda comporta-se como fonte das ondas elementares de Huygens.
      A partir deste princípio, é possível concluir que, em um meio homogêneo e com as mesmas características físicas em toda sua extensão, a frente de onda se desloca mantendo sua forma, desde que não haja obstáculos.
      Desta forma:

      Difração de ondas

      Partindo do Princípio de Huygens, podemos explicar um outro fenômeno ondulatório, a difração.
      O fenômeno chamado difração é o encurvamento sofrido pelos raios de onda quando esta encontra obstáculos à propagação.
      Imagine a situação em que uma onda se propaga em um meio, até onde encontra uma fenda posta em uma barreira.
      Este fenômeno prova que a generalização de que os raios de onda são retilíneos é errada, já que a parte que atinge a barreira é refletida, enquanto os raios que atingem a fenda passam por ela, mas nem todas continuam retas.
      Se esta propagação acontecesse em linha reta, os raios continuariam retos, e a propagação depois da fenda seria uma faixa delimitada pela largura da fenda. No entanto, há um desvio nas bordas.
      Este desvio é proporcional ao tamanho da fenda. Para o caso onde esta largura é muito inferior ao comprimento de onda, as ondas difratadas serão aproximadamente circulares, independente da forma geométrica das ondas incidentes.

      Experiência de Young

      Por volta do século XVII, apesar de vários físicos já defenderem a teoria ondulatória da luz, que afirmava que a luz era incidida por ondas, a teoria corpuscular de Newton, que descrevia a luz como um partícula, era muito bem aceita na comunidade científica.
      Em 1801, o físico e médico inglês, Thomas Young foi o primeiro a demonstrar, com sólidos resultados experimentais, o fenômeno de interferência luminosa, que tem por consequência a aceitação da teoria ondulatória. Embora, hoje em dia, a teoria aceita é a dualidade onda-partícula, enunciada pelo físico francês Louis-Victor de Broglie, baseado nas conclusões sobre as características dos fótons, de Albert Einstein.
      Na experiência realizada por Young, são utilizados três anteparos, sendo o primeiro composto por um orifício, onde ocorre difração da luz incidida, o segundo, com dois orifícios, postos lado a lado, causando novas difrações. No último, são projetadas as manchas causadas pela interferência das ondas resultantes da segunda difração.
      Ao substituir-se estes orifícios por fendas muito estreitas, as manchas tornam-se franjas, facilitando a visualização de regiões mais bem iluminadas (máximos) e regiões mal iluminadas (mínimos).
      Observa-se que o máximo de maior intensidade acontece no centro, e que após este máximo, existem regiões de menor intensidade de luz, e outras de mínimos, intercalando-se.