quarta-feira, 5 de dezembro de 2012

exercicíos resolvidos


1)Em um laboratório um cientista determinou a temperatura de uma substância. Considerando-se as temperaturas:
-100K; 32 °F; -290°C; -250 °C,
Os possíveis valores encontrados pelo cientista foram:
a) 32 °F e -250 °C.
b) 32 °F e -290°C.
c) -100K e 32 °F.
d) -100K e -250 °C.
e) -290°C e -250 °C.



Resolução

Sabemos que a menor temperatura possível é 0K que corresponde a -273°C. Logo, -100k e -290°C são temperaturas impossíveis.
Obtemos então, como resposta a alternativa A.

2) Um estudante de física criou uma escala (°X), comparada com a escala Celsius ele obteve o seguinte gráfico:
a. Qual a equação de conversão entre as duas escalas?
b. Qual a temperatura do corpo humano (37°C) nesta escala?

a.

b. 

Exercício Calorimetria

3) Exercício de calorimetria que exige conhecimentos dequantidade de calorcalor específico e capacidade térmica.

(Exercício resolvido) Para aquecer 1 kg de uma substância de 10 0C a 60 0C, foram necessárias 400 cal.

Determine:
a) o calor específico do material
b) a capacidade térmica da substância



Resolução:

São dados do exercício:
m = 1kg = 1000 g
Q = + 400 cal
t0 = 10 0C
tf = 60 0C.

a)
A variação de temperatura da substância é dada por:
∆t = tf - t0
∆t = 60 – 10
∆t = 50 0C

Pela equação da quantidade de calor obtemos o calor específico da substância:
Q = m.c.∆t
400 = 1000 . c . 50
400 = 50 000 . c
400 / 50 000 = c
c = 0,008 (cal / g . 0C )

b)
A capacidade térmica é obtida pela equação C = m.c, logo:
C = m.c
C = 1000 . 0,008
C = 8 cal/0C

Respostas :
a) c = 0,008 (cal / g . 0C )
b) C = 8 cal/0C

4). Ao receber 3000 cal, um corpo de 150 g aumenta sua temperatura em 20 °C, sem mudar de fase. Qual o calor específico do material desse corpo?
Resolução:
Q = m . c . variação da temperatura
3000 = 150 . c . 20
c = 1 cal/g . °C
Obs: Pelo fato de o calor específico ter dado 1cal/g . °C, podemos concluir q essa substância é a água.
5). Quantas calorias são necessárias para se aquecer 200 l de água, de 15 °C a 70 °C?
Resolução:
Q = m . c . variação da temperatura
Q = 200000 . 1 . (70 – 15)
Q = 11000000 cal
6). Determine:
a) o calor específico do material
b) a capacidade térmica da substância
Resolução/ São dados do exercício:
m = 1kg = 1000 g
Q = + 400 cal
t0 = 10 0C
tf = 60 0C.
a) – A variação de temperatura da substância é dada por:
∆t = tf – t0
∆t = 60 – 10
∆t = 50 0C
- Pela equação da quantidade de calor obtemos o calor específico da substância:
Q = m.c.∆t
400 = 1000 . c . 50
400 = 50 000 . c
400 / 50 000 = c
c = 0,008 (cal / g . 0C )
b) – A capacidade térmica é obtida pela equação C = m.c, logo:
C = m.c
C = 1000 . 0,008
C = 8 cal/0C
Respostas :
a) c = 0,008 (cal / g . 0C )
b) C = 8 cal/0C
07. (UFSM - RS) Um corpo de 400g e calor específico sensível de 0,20cal/g°C, a uma temperatura de 10°C, é colocado em contato térmico com outro corpo de 200g e calor específico sensível de 0,10cal/g°C, a uma temperatura de 60°C. A temperatura final, uma vez estabelecido o equilíbrio térmico entre os dois corpos, será de:  
      a) 14°C
      b) 15°C
      c) 20°C
      d) 30°C
      e) 40°C   

08. (FUVEST) Num calorímetro contendo  200g de água a 20°C coloca-se uma amostra de 50g de um metal a 125°C. Verifica-se que a temperatura de equilíbrio é de 25°C. Desprezando o calor absorvido pelo calorímetro, o calor específico sensível desse metal, em cal/g°C, vale:  
      a) 0,10
      b) 0,20
      c) 0,50
      d) 0,80
      e) 1,0 


Questões - Fundamentos de Óptica
Luz - Comportamento e Princípios:
9. A distância média entre a Terra e o Sol é de 150.000 km. Quanto tempo a luz demora para chegar à Terra? (Considerando c = 300.000 km/s).
O primeiro passo é entender o deslocamento da luz. Como c é uma velocidade constante, o movimento deve ser uniforme, ou seja:
Com isto, basta substituir os valores dados no exercício:
Ainda podemos expressar este tempo em minutos:
Portanto, a luz demora aproximadamente 8 minutos e 20 segundos para viajar do Sol até a Terra.

10. Quando as missões espaciais chegaram à Lua foram deixados espelhos em sua superfície para que pudessem ser feitos experimentos com eles. Suponhamos que, usando um destes espelhos, você deseje descobrir a distância entre a Terra e a Lua. É usado, então, um feixe de laser que é captado após 2,54 segundos. Desconsiderando os movimentos da Terra e da Lua, e usando c = 300.000 km/s, qual a distância entre o nosso planeta e o seu satélite natural?
Como no exercício anterior, a luz descreve um movimento uniforme, logo:
O tempo necessário para que o laser atinja os receptores é equivalente à viagem de ida e volta da luz, logo, precisamos usar a metade deste tempo, ou seja, 1,27 segundos:
11. Ano-luz é a medida de distância usada em astronomia que se refere ao espaço percorrido pela luz durante um ano terrestre. Considerando c = 300.000 km/s e 1 ano = 365,25 dias, quantos quilômetros equivale a um ano-luz?
Precisamos converter a unidade de tempo para segundos e, para isso, precisamos saber que:
1 minuto = 60 segundos
1 hora = 60 minutos = 3600 segundos
1 dia = 24 horas = 1440 minutos = 86400 segundos
1 ano = 8766 horas = 525960 minutos = 31557600 segundos

Sombra e Penúmbra
12. Uma pessoa de 1,9 m de altura está em pé ao lado de um prédio. A sombra do prédio projetada pela luz solar é de 90 m enquanto a da pessoa é de 9 m. Qual a altura do prédio?
Começamos o problema pensando nos raios solares, uma vez que devem incidir paralelamente entre si. A pessoa, a sombra e o raio de luz formam um triângulo retângulo assim como o triângulo formado pelo prédio, sombra e raio de luz; os ângulos formados devem ser os mesmos. Assim podemos escrever uma semelhança de triângulos:
Podemos isolar a altura do prédio e calculá-la em função dos dados conhecidos:
13. Uma lâmpada é usada para iluminar uma sala de 3 m de altura entre o chão e o teto. A uma altura de 1 m do chão está uma mesa quadrada com cada lado medindo 40 cm. Supondo que a lâmpada seja uma fonte puntual localizada exatamente ao centro da mesa, qual a área da sombra da mesa?
Nesta situação podemos analisar a distância entre o centro da mesa e uma das extremidades. Ficamos com a diferença entre a mesa e o teto igual a 2 m e a largura média da mesa igual a 20 cm. Assim, encontraremos o valor de x e com isto as dimensões da sombra.
Usando semelhança de triângulos:
Sabemos que esta é a metade da dimensão da sombra, logo, a dimensão total projetada é de 0,6 m, de onde podemos calcular a área da sombra:

Câmara escura de orifício
14. Um objeto de 20 cm de tamanho é colocado a uma distância de 4 m de uma câmara com uma orifício cuja dimensão entre a entrada e o anteparo é de 50 cm. Qual o tamanho do objeto projetado no anteparo? Ele estará invertido?
Primeiramente devemos interpretar os dados do problema. A distância entre o objeto e a entrada da câmara é p, a distância entre a entrada e o anteparo é p' e o tamanho do objeto é o. Assim, basta aplicar a fórmula da câmara escura:
Isolando o tamanho da imagem, i:
Basta aplicar os valores, lembrando de utilizar a mesma unidade para todas as grandezas!

Questões - Ondas
Velocidade de Propagação
15. O gráfico abaixo representa uma onda que se propaga com velocidade igual a 300m/s.
Determine:
a) a amplitude da onda;
A Amplitude da onda é dada pela distância da origem até a crista da onda, ou seja:
b) o comprimento de onda;
O comprimento de onda é dado pela distância entre duas cristas ou entre 3 nodos, ou seja:
Como a figura mostra a medida de três "meios-comprimento de onda", podemos calculá-lo:
c) a frequência;
Sabendo a velocidade de propagação e o comprimento de onda, podemos calcular a frequência através da equação:
Substituindo os valores na equação:
d) o período.
Como o período é igual ao inverso da frequência:

Refração das ondas
16. Uma agulha vibratória produz ondas com velocidade de propagação igual a 160m/s e comprimento de onda de 1mm, chegando em uma diferença de profundidade com um ângulo formado de 45° e sendo refratado. Após a mudança de profundidades o ângulo refratado passa a ser de 30°. Qual é a nova velocidade de progação da onda?
E o comprimento das ondas refratadas?
Utilizando a Lei de Snell:
Utilizando a relação com velocidades de propagação, chegamos a equação:
A velocidade da onda refratada será 113,1m/s.
Para calcular o comprimento de onda refratada, utilizamos a Lei de Snell, utilizando a relação com comprimentos de onda:
O comprimento da onda refratada será 0,7mm.
Repare que o resultado aparece em milímetros pois as unidades não foram convertidas para o SI no início da resolução.